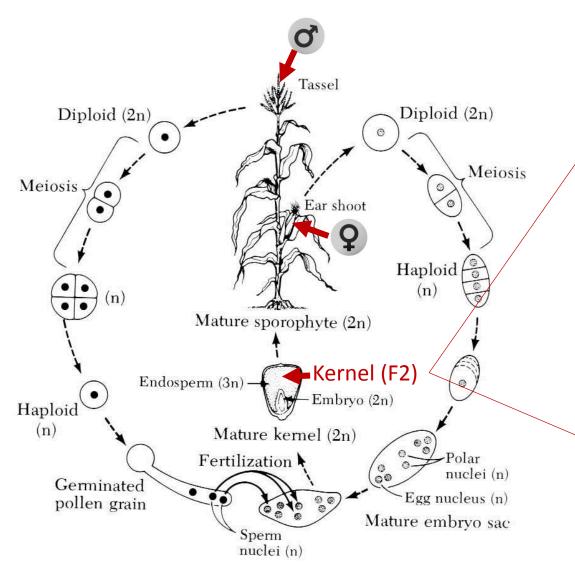
Lab # 3: Mendelian Inheritance in Corn: Phenotypic Ratio and The Chi-Square Test

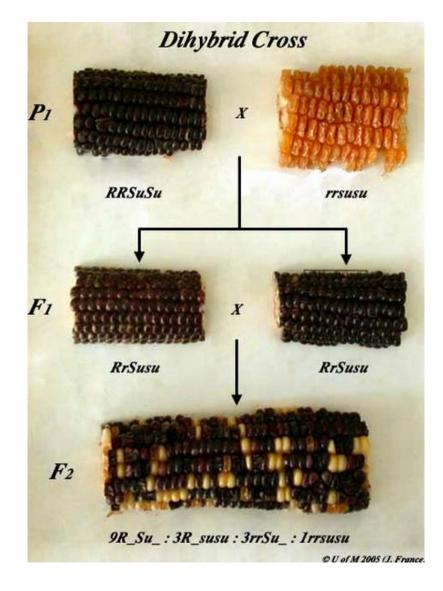

In Previous Labs..

- 1. The Principle of Segregation and the Principle of Independent Assortment.
- 2. Gene Interactions: recessive epistasis, dominant epistasis, complementary gene action

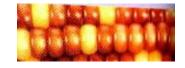
Today's Objectives

- 1. To explore how Mendel's principles can explain transmission of characters from one generation to the next.
- 2. To understand and perform the Chi-square statistical test to evaluate hypotheses about mechanisms of inheritance.

Corn: Genes and Phenotypes



RRSuSu



rrsusu

Corn: Genes and Phenotypes

C and R

C^I and R

Pr and R

Phenotypic ratio?

Observed and Expected Values

	Grain Phenotype	Expected Ratio	Expected Number	Observed Number
A	Purple & Smooth	9/16	9/16 * 381 = 214.31	216
В	Purple & Shrunken	3/16	3/16 * 381 = 71.43	79
С	Yellow & Smooth	3/16	3/16 * 381 = 71.43	65
D	Yellow & Shrunken	1/16	1/16 * 381 = 23.81	21
	Total Number:	381		

Can we consider observed and expected values to be the same?

The Chi-Square Test

- The chi square test is designed to test the statistical significance of an experimental outcome.
- We use the Chi-square test to compare observed data with the data we would expect to obtain according to our hypothesis (=Mendelian ratios).

Null hypothesis - observed values are not different from the expected values

 Alternative hypothesis – observed values are different from expected values

The Chi-Square Test

$\chi^2 = \mathbf{\nabla}$	$(observed - expected)^2$
	number expected

	Grain Phenotype	Expected Ratio	Expected Number	Observed Number	
A	Purple & Smooth	9/16	9/16 * 381 = <mark>214.31</mark>	216	
В	Purple & Shrunken	3/16	3/16 * 381 = <mark>71.43</mark>	79	
С	Yellow & Smooth	3/16	3/16 * 381 = <mark>71.43</mark>	65	
D	Yellow & Shrunken	1/16	1/16 * 381 = <mark>23.81</mark>	21	
	Total Number:	381			

 $\chi^{2} = (216 - 214.31)^{2} / 214.31 + (79 - 71.43)^{2} / 71.43 + (65 - 71.43)^{2} / 71.43 + (21 - 23.81)^{2} / 23.81 = 0.97$

Chi-Square Table of Critical Values

 $\chi^2 = 0.97$

		<i>p</i> Values							
	Degrees of	Cannot Reject the Null Hypothesis			Null Hypothesis Rejected				
	Freedom	0.99	0.90	0.50	0.10	0.05	0.01	0.001	
χ^2 calculations									
	1	—	0.02	.45	2.71	3.84	6.64	10.83	
	2	0.02	0.21	1.39	4.61	5.99	9.21	13.82	
\prec	3	0.11	0.58	2.37	6.25	7.81	11.35	16.27	
	4	0.30	1.06	3.36	7.78	9.49	13.28	18.47	
	5	0.55	1.61	4.35	9.24	11.07	15.09	20.52	

 χ^2 values that lie in the vellow-shaded region of this table allow you to reject the null hypothesis with > 95% confidence, and for recombination experiments, to postulate linkage.

Degrees of Freedom

df = # observations which are free to vary

Total # of hats (n) = 7 # of hats which are free to vary = 6 # of hats which are not free to vary (must wear them) = 1

```
n = # of classes (e.g., phenotypes)
df = 4 - 1 = 3
```

Chi-Square Table of Critical Values

$\chi^2 = 0.97$ df = 3

		TABLE 5.1 Critical Chi Square Values									
		p Values									
		Degrees of	Cannot Reject the Null Hypothesis			Null Hypothesis Rejected					
		Freedom	0.99	0.90	0.50	0.10	0.05	0.01	0.001		
					χ^2 calculations						
Γ		1		0.02	.45	2.71	3.84	6.64	10.83		
		2	0.02	0.21	1.39	4.61	5.99	9.21	13.82		
$\mathbf{f} \prec$		3	0.11	0.58 0.	97 2.37	6.25	7.81	11.35	16.27		
		4	0.30	1.06	3.36	7.78	9.49	13.28	18.47		
Ĺ	_	5	0.55	1.61	4.35	9.24	11.07	15.09	20.52		

 χ^2 values that lie in the yellow-shaded region of this table allow you to reject the null hypothesis with > 95% confidence, and for recombination experiments, to postulate linkage.

Concluding Questions

- 1. Purple color in corn kernels:
 - dominant
 - recessive
- 2. Starchy kernels:
 - dominant
 - recessive
- 3. Which hypothesis do we test using the Chi-square test?
 - null hypothesis
 - alternative hypothesis