Lab # 9 : Restriction enzyme mapping

Restriction Enzymes

Restriction enzymes, also known as restriction endonucleases, are enzymes that cut a DNA molecule at a particular place (=recognition site).

A blunt end :

A sticky end: 5' NNNNNNNNNN AATTCNNNNNNNN 3' 3' NNNNNNTTAA CNNNNNNNNNNNN 5'

Restriction Enzyme Mapping

Today's lab

Quick Reference

Component	Label
Plasmid DNA	DNA
Restriction Enzyme	
Reaction Buffer	Rxn Buffer
Enzyme Grade water	Water
Standard DNA Fragments	Markers
Diluted Hind III	Hind III
Diluted Bgl I	Bgl I

.

Each pair does 4 reaction tubes

Sequence for Restriction Enzyme Reactions										
Rxn Tube	Reaction Buffer (µl)	DNA (µl)	E Qualified Water (µl)	A Hind III (µl)	B Bgl I (µl)	Reaction Volume (µl)	37°C Incubation (minutes)	I0x Gel Load (μl)	Total Sample Volume (µl)	
Т	30	10	10	-	-	50	30-60	5	55	
2	30	10	5	5	-	50	30-60	5	55	
3	30	10	5	-	5	50	30-60	5	55	
4	30	10	-	5	5	50	30-60	5	55	

Gel Electrophoresis

DNA is strongly negative => it will migrate through the gel towards the positive electrode (from cathode to anode)

DNA migration in Agarose Gel

- The pores in the gel separate the DNA molecules according to their size and shape.
- The smaller the DNA molecule, the faster it migrates through the gel.

Visualization of DNA migration

The tracking dye moves along with the DNA sample

Two dyes can be used

Ladder

Ladder

https://passel.unl.edu/pages/printinformationmodule.php?idinformationmodule=1065724861 http://tymkrs.tumblr.com/post/3069263517/gel-electrophoresis-negative-to-positive

Types of DNA Molecules

supercoiled

circular

- supercoiled DNA migrates faster than its linear form
- linear DNA migrates faster than its nicked circular form

http://laneccgenetics.pbworks.com/w/page/58169624/Chromosomes%20Overview https://pixabay.com/en/photos/dna/ amanaimages.com

http://www.bioch.ox.ac.uk/aspsite/index.asp?pageid=1118