Worksheet for GWAS lab

Part 1: Mapping Genes to Traits in Dogs Using SNPs:

A particular SNP is <u>100% associated</u> with coat color when *all* dogs with white fur have the same nucleotide at a particular position, while *all* dogs with black fur have another nucleotide.

SNPs are <u>not associated</u> to fur color, when they occur with about equal frequency in dogs with black fur and dogs with white fur.

												U	-		0		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
*	СС	AT	СС	GG	AA	тс	ΤT	СС	GG	AA	ΤT	GΤ	AG	ΑΑ	СС	GG	AT
*	СС	AT	AC	GG	GG	ТТ	ТТ	СС	GG	AG	ТТ	GG	AG	AG	СС	GG	AT
*	СС	AA	AC	CG	GG	ТТ	ТТ	СТ	G G	ΑΑ	ТТ	GΤ	AG	AG	СС	ΤT	AT
*	СС	AA	AC	GG	AG	ТТ	ТТ	СТ	GG	GG	ТТ	GG	AG	AG	СС	GΤ	AT
55	СС	AT	СС	CG	ΑΑ	ΤT	ΑΑ	СТ	GG	ΑΑ	ТТ	GΤ	AA	ΑΑ	СС	GΤ	AT
25	СС	AT	СС	GG	AA	ТТ	ΑΑ	тс	GG	ΑΑ	ТТ	GG	AG	ΑΑ	СС	GG	ΤT
25	СС	AT	СС	GG	AA	ТТ	ΑΑ	СС	G G	ΑΑ	ТТ	GG	AA	ΑΑ	СС	GΤ	AT
25	СС	AA	СС	GG	AG	ΤT	ΑΑ	тс	GG	GG	ТТ	GG	AA	ΑΑ	СС	ТТ	AT

 Table 1. Nucleotides at 17 different loci in two groups of dogs.

- 1. Draw a circle around the SNP(s) in Table 1 that are 100% associated with coat color. What is the locus number(s) for the 100% associated SNP(s)? ______.
- 2. Draw a rectangle around the SNP(s) in Table 1 that are "somewhat associated" to coat color. What is the locus number(s) for the somewhat associated SNP(s)? ______.
- 3. What is the locus number(s) for the SNP(s) that are not associated to fur color?_____.

Part 2: Mapping coat and hair type traits

You will be provided with either coat length cards or hair type cards. Organize your cards (there are two different sets: short vs. long coat, or curly vs. straight hair).

- Place the loci strip at the top.
- Make a pile for each card type (short vs. long or curly vs. straight) you should have two piles.
- Line the cards up below the loci strip.

<u>Example:</u>			obr22	obr22	obr22	obr22	ob : 20	obr22	obr22
Loci strip:	Dog	Coat Length	chr32 7420804	chr32 7472206	chr32 7473337	chr32 7479580	chr32 7482867	chr32 7490570	chr32 7492364

Two card types:

4. Count the number of nucleotides for each type and record on the following charts (the first loci is an example):

		- 1		1	
SNP locus	Allele	Trait 1	Trait 2	Difference	
		Short Coat	Long Coat		
Chr32	Т	4	4	0	
7420804	С	8	8	0	
			Total number of	0	
			differences		
SNP locus 1	Allele	Trait 1	Trait 2	Difference	
_					
			Total number of		
			differences		
SNP locus 2	Allele	Trait 1	Trait 2	Differenc	
			Total number of		
			differences		
SNP locus 3	Allele	Trait 1	Trait 2	Difference	
			Total number of		
			differences		
SNP locus 4	Allele	Trait 1	Trait 2	Difference	
	111111				
			Total number of		
			differences		
SNP locus 5	Allele	Trait 1	Trait 2	Differenc	
MILL IOCUD C	1 more		11411 2		
F					
I		1	Total number of		
			differences		
1		1			
SNP locus 6	Allolo	Trait 1	Trait 2	Difforonce	

SNP locus 6	Allele	Trait 1	Trait 2	Difference
			Total number of differences	

SNP locus 7	Allele	Trait 1	Trait 2	Difference
	·		Total number of	
			differences	

- 5. Which SNP (or SNPs) is most strongly associated with the trait you are exploring? (Write the SNP locus or loci in the space.) ______.
- 6. Which SNP (or SNPs) is least associated with the trait you are exploring?______.

Part 3: Chi-Square Analysis (Short Coat vs. Long Coat; Curly Hair vs. Straight Hair)

$$X^2 = \sum \frac{(o-e)^2}{e}$$

Example: Coat Length, SNP Locus: 7473337

Total # of alleles	Expected # of alleles
G=9	9/2 = 4.5
T=15	15/2 = 7.5

SNP/Allele	Short	Long	Expected
G	9	0	4.5
Т	3	12	7.5

Short: $\frac{(9-4.5)^2}{4.5} + \frac{(3-7.5)^2}{7.5}$	Long: $\frac{(0-4.5)^2}{4.5} + \frac{(12-7.5)^2}{7.5}$	$X^2 = 4.5 + 2.7 + 4.5 + 2.7 = 14.4$
4.5 7.5	4.5 7.5	$\mathbf{X} = 1.5 + 2.7 + 1.5 + 2.7 + 1.0$

	Р										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515

Chi square = 14.4 p value < 0.001 7. Complete the table below for the SNP with the strongest association for the trait you are exploring.

SNP/Allele	Trait 1	Trait 2	Expected	

- 8. Use the space below to show your calculations of the expected allele distribution for this SNP:
- 9. Calculate the chi-square value (show your work):
- 10. Record the chi-square value_____.
- 11. Using the chi-square distribution table above record the *p*-value for the SNP with the strongest association: ______.
- 12. What does this p-value tell you?