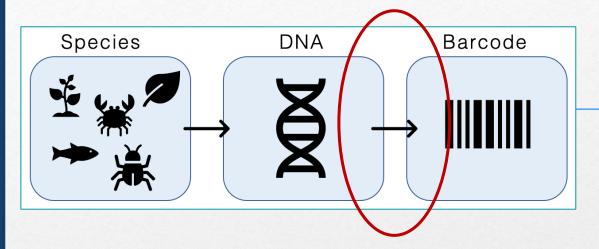
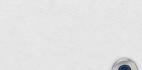


nain





PCR: Amplification of a DNA fragment

Final product:
a targeted piece of DNA
(=DNA barcode)

- Portion of chloroplast DNA
- Portion of mitochondrial DNA
- Portion of bacterial DNA, etc.

PCR Equipment and Materials

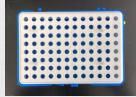
Vortex

Pipettes

Pipette tips

PCR machine

Racks


p20

p200

PCR tube strips

Marker

PCR reagents

PCR protocol

(plant DNA detection from leafhoppers)

- 1. Turn the thermocycler on (the black one on the left)
- 2. Take out from the freezer: PCR PreMix, primers (working solution; 4 µM)
- 3. Prepare on the bench: ddH₂O (in the right drawer), one 1.5 ml microcentrifuge tube.
- 4. Prepare PCR cocktail (#reactions = #samples+1; to cover pipetting error):

PCR reagent	1 reaction	5 reactions	10 reactions
PCR PreMix	10 μl	50 μl	100 μ1
Primer 1 (2 µM)	2 μ1	10 μl	20 μl
Primer 2 (2 µM)	2 μ1	10 μl	20 μl
ddH ₂ O	5.2 μl	26 µl	52 μl

- 5. Prepare 0.2 ml PCR strip tubes (in the drawer, next to the window)
- 6. Take DNA samples out from the fridge.
- 7. Place 19.2 µl of PCR cocktail in each tube.
- 8. Add **0.8 μl** of a DNA sample in each tube. Mixed by pipetting.
- 9. Place strip tubes in the thermocycler (in any block: right or left)
- 10. Click on "RUN" -> "PROCEED". "Under "MAIN" find protocol ALINA1LH. Run it.

PCR settings:

PCR reagents:

PCR PreMix

Primers 1 and 2

water

Follow the protocol

- 94°C for 4 min
- ×35 cycles:

94°C for 30 sec 57°C for 30 sec

72°C for 30 sec

- 72°C for 2 min
- Hold at 4°C for 9 hours

 Typically, PCR runs about 2-2.5 hours

11. To stop the protocol, press on "CANCEL". Turn the thermocycler off. Take the tubes out and place them in the freezer.

Preparing PCR "cocktail"

PCR PreMix

DNase/RNase-

Free Distilled

Water

10 μl

5.2 μl

 2μ

(plant 21/11 detection from feathopper)

PCR protocol

- 1. Turn the thermocycler on (the black one on the left)
- 2. Take out from the freezer: PCR PreMix, primers (working solution; $4\,\mu\text{M})$
- 3. Prepare on the bench: ddH₂O (in the right drawer), one 1.5 ml microcentrifuge tube.
- 4. Prepare PCR cockta (#reactions = #samples+1; to cover pipetting error):

1 reaction	5 reactions	10 reactions
10 μ1	50 μl	100 μ1
2 μl	10 μl	20 μl
2 μ1	10 μl	20 μl
5.2 μl	26 μl	52 μl
	10 μl 2 μl	10 μl 50 μl 2 μl 10 μl 2 μl 10 μl

Demo 1: Adding PCR PreMix and Water

Demo 2: Adding Primers

Before the next step...

After completing step 4, PCR reagents should be placed back to the freezer

PCR protocol

(plant DNA detection from leafhoppers)

- 1. Turn the thermocycler on (the black one on the left)
- 2. Take out from the freezer: PCR PreMix, primers (working solution; $4 \mu M$)
- 3. Prepare on the bench: ddH₂O (in the right drawer), one 1.5 ml microcentrifuge tube.
- 4. Prepare PCR cocktail (#reactions = #samples+1; to cover pipetting error):

PCR reagent	1 reaction	5 reactions	10 reactions
PCR PreMix	10 μl	50 μl	100 μl
Primer 1 (2 µM)	2 μl	10 μl	20 μ1
Primer 2 (2 µM)	2 μ1	10 μl	20 μ1
ddH ₂ O	5.2 μl	26 µl	52 μl

- 5. Prepare 0.2 ml PCR strip tubes (in the drawer, next to the window)
- 6. Take DNA samples out from the fridge.
- 7. Place 19.2 μl of PCR cocktail in each tube.
- 8. Add **0.8 μl** of a DNA sample in each tube. Mixed by pipetting.
- 9. Place strip tubes in the thermocycler (in any block: right or left)
- 10. Click on "RUN" -> "PROCEED". "Under "MAIN" find protocol ALINA1LH. Run it.

PCR settings:

- 94°C for 4 min
- ×35 cycles:

94°C for 30 sec

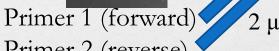
57°C for 30 sec

72°C for 30 sec

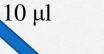
- 72°C for 2 min
- Hold at 4°C for 9 hours

11. To stop the protocol, press on "CANCEL". Turn the thermocycler off. Take the tubes out and place them in the freezer.

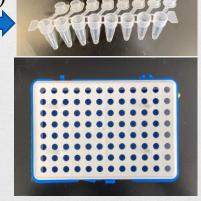
Adding DNA Template


DNase/RNase-

Free Distilled

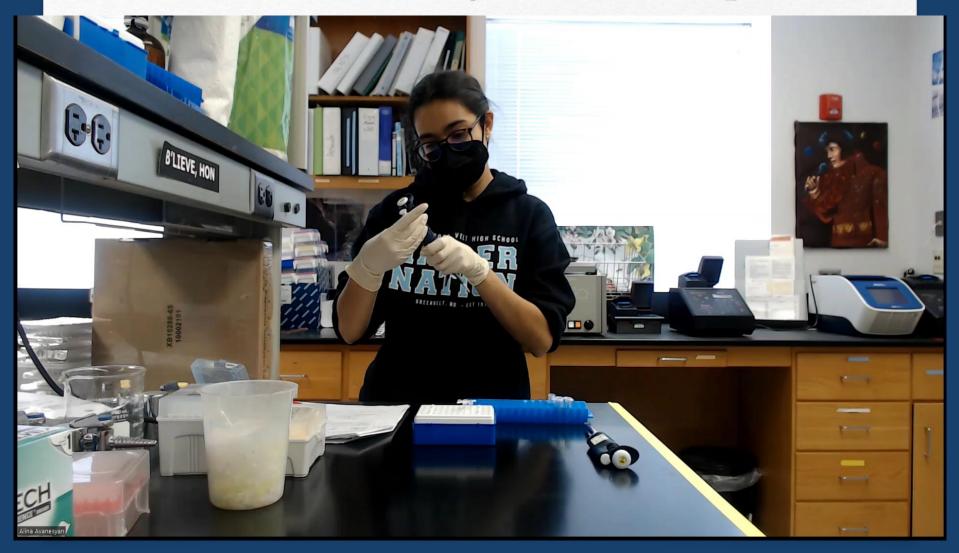

Water

5.2 µl



19.2 µl (in each tube)

0.8 μl



- 5. Prepare 0.2 ml PCR strip tubes (in the drawer, next to the window)
- 6. Take DNA samples out from the fridge.
- 7. Place 19.2 μl of PCR cocktail in each tube.
- 8. Add 0.8 µl of a DNA sample in each tube. Mixed by pipetting.

Demo 3: Transferring PCR "cocktail" to PCR tubes

Demo 4: Adding DNA Template

Demo 5: Labelling PCR tubes

Running PCR

~2 hours later...

- 9. Place strip tubes in the thermocycler (in any block: right or left)
- 10. Click on "RUN" -> "PROCEED". "Under "MAIN" find protocol ALINA1LH. Run it.

PCR settings:

- 94°C for 4 min
- ×35 cycles:

94°C for 30 sec

 57^{0} C for 30 sec

72°C for 30 sec

- 72°C for 2 min
- Hold at 4°C for 9 hours
- 11. To stop the protocol, press on "CANCEL". Turn the thermocycler off. Take the tubes out and place them in the freezer.

PCR is done!

After PCR is done, you can either store your samples at -20°C until you need to run a gel or to do DNA purification, or you can proceed immediately to DNA purification (~40 min total).

Image and video credits

- Videos: PCR steps were demonstrated by Anya Wilkinson; recording and editing were done by Alina Avanesyan
- Photos: preparing and editing by Anya Wilkinson and Alina Avanesyan
- PCR protocol: prepared by Alina Avanesyan
- Videos were recorded and photos were taken in Dr. David Hawthorne's lab: 4172
 Plant Science Building, Department of Entomology, University of Maryland, College Park, MD

Acknowledgements

- We thank Dr. David Hawthorne (Department of Entomology, University of Maryland) for providing lab equipment and lab space for our DNA barcoding work; for providing lab space to take the photos and record the videos needed for developing this course; and for continuous support and encouragement!
- We also thank Anya Wilkinson for demonstrating the main PCR steps for this course

